Characterization and Selection of WiFi Channel State Information Features for Human Activity Detection in a Smart Public Transportation System
Robust methods are needed to detect how people are moving in smart public transportation systems. This paper proposes and characterizes effective means to accurately detect passengers. We analyze a public WiFi-based activity recognition (WiAR) dataset to extract human activity features from Channel...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of Intelligent Transportation Systems |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10332939/ |