Assessment of Thermal Stability of Mutant p53 Proteins via Differential Scanning Fluorimetry

The p53 protein is a transcription factor that preserves the integrity of the genome. The <i>TP53</i> gene has inactivating mutations in about 50% of all human cancers. Some missense mutations lead to decreased thermal stability in the p53 protein, its unfolding and aggregation under phy...

Full description

Bibliographic Details
Main Authors: Raniya Khadiullina, Regina Mirgayazova, Damir Davletshin, Elvina Khusainova, Vitaly Chasov, Emil Bulatov
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/13/1/31
Description
Summary:The p53 protein is a transcription factor that preserves the integrity of the genome. The <i>TP53</i> gene has inactivating mutations in about 50% of all human cancers. Some missense mutations lead to decreased thermal stability in the p53 protein, its unfolding and aggregation under physiological conditions. A general understanding of the impact of point mutations on the stability and conformation of mutant p53 is essential for the design and development of small molecules that target specific p53 mutations. In this work, we determined the thermostability properties of some of the most common mutant forms of the p53 protein—p53(R273H), p53(R248Q), p53(R248W) and p53(Y220C)—that are often considered as attractive therapeutic targets. The results showed that these missense mutations lead to destabilization of the p53 protein and a decrease in its melting temperature.
ISSN:2075-1729