Neural network Gaussian processes as efficient models of potential energy surfaces for polyatomic molecules
Kernel models of potential energy surfaces (PESs) for polyatomic molecules are often restricted by a specific choice of the kernel function. This can be avoided by optimizing the complexity of the kernel function. For regression problems with very expensive data, the functional form of the model ker...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | Machine Learning: Science and Technology |
Subjects: | |
Online Access: | https://doi.org/10.1088/2632-2153/ad0652 |