A note on the strong law of large numbers for associated sequences
We prove that the sequence {bn−1∑i=1n(Xi−EXi)}n≥1 converges a.e. to zero if {Xn,n≥1} is anassociated sequence of random variables with ∑n=1∞bkn−2Var(∑i=kn−1+1knXi)<∞ where {bn,n≥1} is a positive nondecreasing sequence and {kn,n≥1} is a strictly increasing sequence, both tending to infinity as n t...
Príomhchruthaitheoir: | |
---|---|
Formáid: | Alt |
Teanga: | English |
Foilsithe / Cruthaithe: |
Hindawi Limited
2005-01-01
|
Sraith: | International Journal of Mathematics and Mathematical Sciences |
Rochtain ar líne: | http://dx.doi.org/10.1155/IJMMS.2005.3195 |