Deep Reinforcement Learning Agent for Negotiation in Multi-Agent Cooperative Distributed Predictive Control

This paper proposes a novel solution for using deep neural networks with reinforcement learning as a valid option in negotiating distributed hierarchical controller agents. The proposed method is implemented in the upper layer of a hierarchical control architecture composed at its lowest levels by d...

Full description

Bibliographic Details
Main Authors: Oscar Aponte-Rengifo, Pastora Vega, Mario Francisco
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/4/2432
Description
Summary:This paper proposes a novel solution for using deep neural networks with reinforcement learning as a valid option in negotiating distributed hierarchical controller agents. The proposed method is implemented in the upper layer of a hierarchical control architecture composed at its lowest levels by distributed control based on local models and negotiation processes with fuzzy logic. The advantage of the proposal is that it does not require the use of models in the negotiation, and it facilitates the minimization of any dynamic behavior index and the specification of constraints. Specifically, it uses a reinforcement learning policy gradient algorithm to achieve a consensus among the agents. The algorithm is successfully applied to a level system composed of eight interconnected tanks that are quite difficult to control due to their non-linear nature and the high interaction among their subsystems.
ISSN:2076-3417