Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range

In this paper, measurements and analysis of the small-signal net modal gain of single-layer InAs/InP(100) quantum-dot (QD) optical amplifiers are presented. The amplifiers use only a single layer of InAs QDs on top of a thin InAs quantum well. The devices have been fabricated using a layer stack tha...

Full description

Bibliographic Details
Main Authors: Y. Jiao, P. J. van Veldhoven, E. Smalbrugge, M. K. Smit, S. He, E. A. J. M. Bente
Format: Article
Language:English
Published: IEEE 2012-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/6365730/
_version_ 1819120423919419392
author Y. Jiao
P. J. van Veldhoven
E. Smalbrugge
M. K. Smit
S. He
E. A. J. M. Bente
author_facet Y. Jiao
P. J. van Veldhoven
E. Smalbrugge
M. K. Smit
S. He
E. A. J. M. Bente
author_sort Y. Jiao
collection DOAJ
description In this paper, measurements and analysis of the small-signal net modal gain of single-layer InAs/InP(100) quantum-dot (QD) optical amplifiers are presented. The amplifiers use only a single layer of InAs QDs on top of a thin InAs quantum well. The devices have been fabricated using a layer stack that is compatible with active-passive integration scheme, which makes further integration possible. The measurement results show sufficient optical gain in the amplifiers and can thus be used in applications such as lasers for long-wavelength optical coherence tomography and gas detection. The temperature dependence of the modal gain is also characterized. An existing rate-equation model was adapted and has been applied to analyze the measured gain spectra. The current injection efficiency has been introduced in the model to obtain a good fit with the measurement. It is found that only a small portion ( ~ 1.7%) of the injected carriers is actually captured by the QDs. The temperature dependence of several parameters describing the QDs is also discovered. The mechanisms causing the blue shift of peak gain as the current density increases and the temperature changes are analyzed and discussed in detail.
first_indexed 2024-12-22T06:20:26Z
format Article
id doaj.art-050ce0556e48468db79d80374d0ea12c
institution Directory Open Access Journal
issn 1943-0655
language English
last_indexed 2024-12-22T06:20:26Z
publishDate 2012-01-01
publisher IEEE
record_format Article
series IEEE Photonics Journal
spelling doaj.art-050ce0556e48468db79d80374d0ea12c2022-12-21T18:35:58ZengIEEEIEEE Photonics Journal1943-06552012-01-01462292230610.1109/JPHOT.2012.22310636365730Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength RangeY. Jiao0P. J. van Veldhoven1E. Smalbrugge2M. K. Smit3S. He4E. A. J. M. Bente5<formula formulatype="inline"><tex Notation="TeX">$^{1}$</tex></formula>COBRA Research Institute, Eindhoven University of Technology, Eindhoven, The Netherlands<formula formulatype="inline"><tex Notation="TeX">$^{1}$</tex></formula> COBRA Research Institute, Eindhoven University of Technology, Eindhoven, the Netherlands<formula formulatype="inline"><tex Notation="TeX">$^{1}$</tex></formula>COBRA Research Institute, Eindhoven University of Technology, Eindhoven, the Netherlands<formula formulatype="inline"><tex Notation="TeX">$^{1}$</tex></formula>COBRA Research Institute, Eindhoven University of Technology, Eindhoven, the Netherlands<formula formulatype="inline"><tex Notation="TeX">$^{2}$</tex></formula>Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, China<formula formulatype="inline"><tex Notation="TeX">$^{1}$</tex></formula>COBRA Research Institute, Eindhoven University of Technology, Eindhoven, the NetherlandsIn this paper, measurements and analysis of the small-signal net modal gain of single-layer InAs/InP(100) quantum-dot (QD) optical amplifiers are presented. The amplifiers use only a single layer of InAs QDs on top of a thin InAs quantum well. The devices have been fabricated using a layer stack that is compatible with active-passive integration scheme, which makes further integration possible. The measurement results show sufficient optical gain in the amplifiers and can thus be used in applications such as lasers for long-wavelength optical coherence tomography and gas detection. The temperature dependence of the modal gain is also characterized. An existing rate-equation model was adapted and has been applied to analyze the measured gain spectra. The current injection efficiency has been introduced in the model to obtain a good fit with the measurement. It is found that only a small portion ( ~ 1.7%) of the injected carriers is actually captured by the QDs. The temperature dependence of several parameters describing the QDs is also discovered. The mechanisms causing the blue shift of peak gain as the current density increases and the temperature changes are analyzed and discussed in detail.https://ieeexplore.ieee.org/document/6365730/Quantum dot (QD)semiconductor optical amplifier (SOA)optical gainrate-equation (RE) model
spellingShingle Y. Jiao
P. J. van Veldhoven
E. Smalbrugge
M. K. Smit
S. He
E. A. J. M. Bente
Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
IEEE Photonics Journal
Quantum dot (QD)
semiconductor optical amplifier (SOA)
optical gain
rate-equation (RE) model
title Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
title_full Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
title_fullStr Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
title_full_unstemmed Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
title_short Measurement and Analysis of Temperature-Dependent Optical Modal Gain in Single-Layer InAs/InP(100) Quantum-Dot Amplifiers in the 1.6- to 1.8-<formula formulatype="inline"><tex Notation="TeX">$\mu\hbox{m}$</tex> </formula> Wavelength Range
title_sort measurement and analysis of temperature dependent optical modal gain in single layer inas inp 100 quantum dot amplifiers in the 1 6 to 1 8 formula formulatype inline tex notation tex mu hbox m tex formula wavelength range
topic Quantum dot (QD)
semiconductor optical amplifier (SOA)
optical gain
rate-equation (RE) model
url https://ieeexplore.ieee.org/document/6365730/
work_keys_str_mv AT yjiao measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange
AT pjvanveldhoven measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange
AT esmalbrugge measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange
AT mksmit measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange
AT she measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange
AT eajmbente measurementandanalysisoftemperaturedependentopticalmodalgaininsinglelayerinasinp100quantumdotamplifiersinthe16to18formulaformulatypeinlinetexnotationtexmuhboxmtexformulawavelengthrange