Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.
Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly unde...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3631220?pdf=render |
_version_ | 1811262702226505728 |
---|---|
author | Junchao Duan Yongbo Yu Yang Li Yang Yu Yanbo Li Xianqing Zhou Peili Huang Zhiwei Sun |
author_facet | Junchao Duan Yongbo Yu Yang Li Yang Yu Yanbo Li Xianqing Zhou Peili Huang Zhiwei Sun |
author_sort | Junchao Duan |
collection | DOAJ |
description | Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases. |
first_indexed | 2024-04-12T19:31:27Z |
format | Article |
id | doaj.art-052f47921fd14d4e8034fbd87488a53f |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T19:31:27Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-052f47921fd14d4e8034fbd87488a53f2022-12-22T03:19:20ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0184e6208710.1371/journal.pone.0062087Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.Junchao DuanYongbo YuYang LiYang YuYanbo LiXianqing ZhouPeili HuangZhiwei SunSilica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.http://europepmc.org/articles/PMC3631220?pdf=render |
spellingShingle | Junchao Duan Yongbo Yu Yang Li Yang Yu Yanbo Li Xianqing Zhou Peili Huang Zhiwei Sun Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS ONE |
title | Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. |
title_full | Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. |
title_fullStr | Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. |
title_full_unstemmed | Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. |
title_short | Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. |
title_sort | toxic effect of silica nanoparticles on endothelial cells through dna damage response via chk1 dependent g2 m checkpoint |
url | http://europepmc.org/articles/PMC3631220?pdf=render |
work_keys_str_mv | AT junchaoduan toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT yongboyu toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT yangli toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT yangyu toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT yanboli toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT xianqingzhou toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT peilihuang toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint AT zhiweisun toxiceffectofsilicananoparticlesonendothelialcellsthroughdnadamageresponseviachk1dependentg2mcheckpoint |