Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm
Electroencephalogram (EEG) signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2014-01-01
|
Series: | Journal of King Saud University: Computer and Information Sciences |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1319157813000025 |