Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • D53. The Spectrum of Severity...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
D53. The Spectrum of Severity in Metopic Craniosynostosis: An Analysis of the Largest Cohort to Date using Craniorate™ Machine Learning Algorithm

D53. The Spectrum of Severity in Metopic Craniosynostosis: An Analysis of the Largest Cohort to Date using Craniorate™ Machine Learning Algorithm

Bibliographic Details
Main Authors: Angel Dixon, BA, Anne Glenney, BA, Nicolás Kass, BA, Joseph Mocharnuk, BS, Casey Zhang, BS, Erin Anstadt, MD, Lucas A. Dvoracek, MD, Megan Pencek, MD, Wenzheng Tao, BS, Ross Whitaker, PhD, Lisa R. David, MD, MBA, Michael Golinko, MD, Michael Alperovich, MD, Christopher M. Runyan, MD, PhD, Jesse A. Taylor, MD, Jordan Swanson, MD, Jesse Goldstein, MD
Format: Article
Language:English
Published: Wolters Kluwer 2024-05-01
Series:Plastic and Reconstructive Surgery, Global Open
Online Access:http://journals.lww.com/prsgo/fulltext/10.1097/01.GOX.0001018700.97680.61
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

http://journals.lww.com/prsgo/fulltext/10.1097/01.GOX.0001018700.97680.61

Similar Items

  • SP43. The Spectrum Of Severity In Metopic Craniosynostosis: An Analysis Of The Largest Cohort To Date Using Craniorate™ Machine Learning Algorithm
    by: Nicolás M. Kass, BA, et al.
    Published: (2024-04-01)
  • P64. CRANIORATE: AN IMAGE-BASED, DEEP-PHENOTYPING ANALYSIS TOOLSET, REPOSITORY, AND ONLINE CLINICIAN INTERFACE FOR CRANIOSYNOSTOSIS
    by: Justin Beiriger, BSE, et al.
    Published: (2022-04-01)
  • 18. Machine Learning in Metopic Craniosynostosis: Does Phenotypic Severity Predict Long-term Aesthetic Outcome?
    by: Jessica Daviana Blum, MSc, et al.
    Published: (2022-06-01)
  • 41. AI Radiographic Severity Assessment and Age at Surgery Associated with Neurocognitive Outcomes in Metopic Craniosynostosis
    by: Mariana N. Almeida, BA, et al.
    Published: (2023-04-01)
  • Abstract: A Comparison of Intracranial Volumes in Normal Children and Patients with Metopic Craniosynostosis
    by: Brendan J. Cronin, BA, et al.
    Published: (2018-09-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs