HS-Gen: a hypersphere-constrained generation mechanism to improve synthetic minority oversampling for imbalanced classification
Abstract Mitigating the impact of class-imbalance data on classifiers is a challenging task in machine learning. SMOTE is a well-known method to tackle this task by modifying class distribution and generating synthetic instances. However, most of the SMOTE-based methods focus on the phase of data se...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2022-12-01
|
Series: | Complex & Intelligent Systems |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40747-022-00938-9 |