Neural networks can learn to utilize correlated auxiliary noise
Abstract We demonstrate that neural networks that process noisy data can learn to exploit, when available, access to auxiliary noise that is correlated with the noise on the data. In effect, the network learns to use the correlated auxiliary noise as an approximate key to decipher its noisy input da...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-11-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-00502-4 |