Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes.
Intermittency are a common and challenging problem in demand forecasting. We introduce a new, unified framework for building probabilistic forecasting models for intermittent demand time series, which incorporates and allows to generalize existing methods in several directions. Our framework is base...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0259764 |