Prediction of thermal cycling behaviour of Ni-rich NiTi SMA using empirical and artificial neural network modelling

Abstract NiTi SMAs, also known as Nitinol, are well-known and widely used due to their unique properties. This study predicts the transformation behaviour of a binary near-equiatomic shape memory alloy (SMA) during thermal cycling using empirical and ANN-based models. The input data was generated th...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Swaminathan Ganesan, Shreyash Pandey, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagmani
التنسيق: مقال
اللغة:English
منشور في: Springer 2025-02-01
سلاسل:Discover Materials
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1007/s43939-025-00203-z