Prediction of thermal cycling behaviour of Ni-rich NiTi SMA using empirical and artificial neural network modelling
Abstract NiTi SMAs, also known as Nitinol, are well-known and widely used due to their unique properties. This study predicts the transformation behaviour of a binary near-equiatomic shape memory alloy (SMA) during thermal cycling using empirical and ANN-based models. The input data was generated th...
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Springer
2025-02-01
|
سلاسل: | Discover Materials |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1007/s43939-025-00203-z |