Solution of the Rational Difference Equation xn+1=xn−131+xn−1xn−3xn−5xn−7xn−9xn−11{x_{n + 1}} = {{{x_{n - 13}}} \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}}}

In this paper, solution of the following difference equation is examined xn+1=xn−131+xn−1xn−3xn−5xn−7xn−9xn−11,{x_{n + 1}} = {{{x_{n - 13}}} \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}}}, where the initial conditions are positive real numbers.

Bibliographic Details
Main Authors: Simsek Dagistan, Ogul Burak, Abdullayev Fahreddin
Format: Article
Language:English
Published: Sciendo 2020-04-01
Series:Applied Mathematics and Nonlinear Sciences
Subjects:
Online Access:https://doi.org/10.2478/amns.2020.1.00047