COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES

This study compares four machine-learning algorithms comprising of Classification And Regression Trees (CART), Random Forest (RF), Gradient Tree Boosting (GTB) and Support Vector Machine (SVM) for the classification of urban land-use and land-cover (LULC) features. Using multitemporal and multisenso...

Full description

Bibliographic Details
Main Authors: Y. Ouma, B. Nkwae, D. Moalafhi, P. Odirile, B. Parida, G. Anderson, J. Qi
Format: Article
Language:English
Published: Copernicus Publications 2022-05-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/681/2022/isprs-archives-XLIII-B3-2022-681-2022.pdf