COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES
This study compares four machine-learning algorithms comprising of Classification And Regression Trees (CART), Random Forest (RF), Gradient Tree Boosting (GTB) and Support Vector Machine (SVM) for the classification of urban land-use and land-cover (LULC) features. Using multitemporal and multisenso...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-05-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/681/2022/isprs-archives-XLIII-B3-2022-681-2022.pdf |