Practical application of quantum neural network to materials informatics
Abstract Quantum neural network (QNN) models have received increasing attention owing to their strong expressibility and resistance to overfitting. It is particularly useful when the size of the training data is small, making it a good fit for materials informatics (MI) problems. However, there are...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-04-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-59276-0 |