H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation

Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cel...

Full description

Bibliographic Details
Main Authors: Ji-Eun Lee, Chaochen Wang, Shiliyang Xu, Young-Wook Cho, Lifeng Wang, Xuesong Feng, Anne Baldridge, Vittorio Sartorelli, Lenan Zhuang, Weiqun Peng, Kai Ge
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2013-12-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/01503
Description
Summary:Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear. In this study, we identify MLL4 (KMT2D) as a major mammalian H3K4 mono- and di-methyltransferase with partial functional redundancy with MLL3 (KMT2C). Using adipogenesis and myogenesis as model systems, we show that MLL4 exhibits cell-type- and differentiation-stage-specific genomic binding and is predominantly localized on enhancers. MLL4 co-localizes with lineage-determining transcription factors (TFs) on active enhancers during differentiation. Deletion of Mll4 markedly decreases H3K4me1/2, H3K27ac, Mediator and Polymerase II levels on enhancers and leads to severe defects in cell-type-specific gene expression and cell differentiation. Together, these findings identify MLL4 as a major mammalian H3K4 mono- and di-methyltransferase essential for enhancer activation during cell differentiation.
ISSN:2050-084X