Quantum Current Algebra Symmetries and Integrable Many-Particle Schrödinger Type Quantum Hamiltonian Operators
Based on the G. Goldin’s quantum current algebra symmetry representation theory, have succeeded in explaining a hidden relationship between the quantum many-particle Hamiltonian operators, defined in the Fock space, their factorized structure and integrability. Interesting for applications...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/8/975 |