A neuronal least-action principle for real-time learning in cortical circuits
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2024-12-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/89674 |