A remark on the radial minimizer of the Ginzburg-Landau functional

Let $\Omega\subset \mathbb{R}^2$ be a bounded domain with the same area as the unit disk $B_1$ and let $$ E_\varepsilon(u,\Omega)=\frac{1}{2}\int_\Omega |\nabla u|^2\,dx +\frac{1}{4\varepsilon^2}\int_\Omega (|u|^2-1)^2\,dx $$ be the Ginzburg-Landau functional. Denote by $\tilde u_\varepsilon$...

Full description

Bibliographic Details
Main Authors: Barbara Brandolini, Francesco Chiacchio
Format: Article
Language:English
Published: Texas State University 2014-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/224/abstr.html