A remark on the radial minimizer of the Ginzburg-Landau functional
Let $\Omega\subset \mathbb{R}^2$ be a bounded domain with the same area as the unit disk $B_1$ and let $$ E_\varepsilon(u,\Omega)=\frac{1}{2}\int_\Omega |\nabla u|^2\,dx +\frac{1}{4\varepsilon^2}\int_\Omega (|u|^2-1)^2\,dx $$ be the Ginzburg-Landau functional. Denote by $\tilde u_\varepsilon$...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2014-10-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2014/224/abstr.html |