Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca2+ homeostasis

Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construc...

Full description

Bibliographic Details
Main Authors: Yuan Liu, Xue-chun Wang, Dan Hu, Shu-ran Huang, Qing-shu Li, Zhi Li, Yan Qu
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2016-01-01
Series:Neural Regeneration Research
Subjects:
Online Access:http://www.nrronline.org/article.asp?issn=1673-5374;year=2016;volume=11;issue=7;spage=1134;epage=1140;aulast=Liu
Description
Summary:Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+ concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+ concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+ homeostasis, by upregulating SERCA expression and by downregulating IP3R expression.
ISSN:1673-5374