Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
Abstract Glass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-07-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-15981-2 |