Symmetries of the Continuous and Discrete Krichever-Novikov Equation

A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highe...

Full description

Bibliographic Details
Main Authors: Decio Levi, Pavel Winternitz, Ravil I. Yamilov
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2011-10-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2011.097