Natural Gradient Boosting for Probabilistic Prediction of Soaked CBR Values Using an Explainable Artificial Intelligence Approach
The California bearing ratio (CBR) value of subgrade is the most used parameter for dimensioning flexible and rigid pavements. The test for determining the CBR value is typically conducted under soaked conditions and is costly, labour-intensive, and time-consuming. Machine learning (ML) techniques h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/14/2/352 |