Natural Gradient Boosting for Probabilistic Prediction of Soaked CBR Values Using an Explainable Artificial Intelligence Approach

The California bearing ratio (CBR) value of subgrade is the most used parameter for dimensioning flexible and rigid pavements. The test for determining the CBR value is typically conducted under soaked conditions and is costly, labour-intensive, and time-consuming. Machine learning (ML) techniques h...

ver descrição completa

Detalhes bibliográficos
Principais autores: Esteban Díaz, Giovanni Spagnoli
Formato: Artigo
Idioma:English
Publicado em: MDPI AG 2024-01-01
coleção:Buildings
Assuntos:
Acesso em linha:https://www.mdpi.com/2075-5309/14/2/352

Registros relacionados