Natural Gradient Boosting for Probabilistic Prediction of Soaked CBR Values Using an Explainable Artificial Intelligence Approach
The California bearing ratio (CBR) value of subgrade is the most used parameter for dimensioning flexible and rigid pavements. The test for determining the CBR value is typically conducted under soaked conditions and is costly, labour-intensive, and time-consuming. Machine learning (ML) techniques h...
Principais autores: | Esteban Díaz, Giovanni Spagnoli |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2024-01-01
|
coleção: | Buildings |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2075-5309/14/2/352 |
Registros relacionados
-
Effect of Soaking on the CBR-Value of Subbase Soil
por: Zeena Tariq Jaleel
Publicado em: (2011-04-01) -
PENGARUH CAMPURAN ABU SABUT KELAPA PADA TANAH LEMPUNG TERHADAP NILAI CBR TERENDAM (SOAKED) DAN CBR TIDAK TERENDAM (UNSOAKED)
por: Adzuha - Desmi, et al.
Publicado em: (2021-08-01) -
Evaluation of Subgrade Soils using California Bearing Ratio (Cbr) in Parts of Rivers
por: N E Ekeocha, et al.
Publicado em: (2014-07-01) -
Relevance of CBR for the Asia-Pacific Region
por: San Yuenwah
Publicado em: (2012-06-01) -
Evaluation of Pavement Structural Number and Resilient Modulus in a Schistose Quartzite/Quartzite Environment using Dynamic Cone Penetration Test Data: Consequence for flexible pavement construction
por: Olumuyiwa Falowo, et al.
Publicado em: (2024-12-01)