Novel nanotherapeutics for cancer immunotherapy by albumin nanoparticles functionalized with PD-1 and PD-L1 aptamers

Abstract Background PD-1/PD-L1 blockade plays a crucial role in cancer immunotherapy. Exploration of new technologies to further enhance the efficacy of PD-1/PD-L1 blockade is therefore of potential medical importance. Nanotherapeutics can accumulate in tumor tissues due to enhanced permeability and...

Full description

Bibliographic Details
Main Authors: Qiping Jiang, Fengjiao Yao, Yacong An, Xialian Lai, Xundou Li, Zhen Yu, Xian-Da Yang
Format: Article
Language:English
Published: BMC 2024-01-01
Series:Cancer Nanotechnology
Subjects:
Online Access:https://doi.org/10.1186/s12645-023-00239-x
Description
Summary:Abstract Background PD-1/PD-L1 blockade plays a crucial role in cancer immunotherapy. Exploration of new technologies to further enhance the efficacy of PD-1/PD-L1 blockade is therefore of potential medical importance. Nanotherapeutics can accumulate in tumor tissues due to enhanced permeability and retention (EPR) effects. In this study, a novel nanotherapeutic for cancer immunotherapy was implemented with albumin nanoparticles functionalized by both PD-1 and PD-L1 aptamers. Results Albumin nanoparticles (NP) were functionalized with either PD-1 aptamers (PD1-NP), PD-L1 aptamers (PDL1-NP), or both types of aptamers (PD1-NP-PDL1). Average sizes of PD1-NP, PDL1-NP, and PD1-NP-PDL1 were 141.8 nm, 141.8 nm, and 164.2 nm, respectively. PD1-NP had good affinity for activated T cells that expresses PD-1. Similarly, PDL1-NP could bind with MDA-MB-231 or CT26 tumor cells that express PD-L1. Moreover, the bispecific PD1-NP-PDL1 could bind with both the activated T cells and the PD-L1-expressing tumor cells, and tether the two type of cells together. Functionally, aptamer-modified nanoparticles exhibited stronger immune-stimulating effects vs. free aptamers. Specifically, PD1-NP or PDL1-NP induced stronger lymphocyte-mediated cytotoxicity against PD-L1-expressing tumor cells in vitro vs. free PD-1 or PD-L1 aptamers. Animal studies also showed that PD1-NP or PDL1-NP significantly improved antitumor efficacy against CT26 colon cancer in vivo vs. free PD-1 or PD-L1 aptamers. Importantly, the bispecific PD1-NP-PDL1 further boosted the in vivo antitumor efficacy compared with PD1-NP or PDL1-NP, without raising systemic toxicity. Conclusion The results suggest that the bispecific PD1-NP-PDL1 is a promising nanotherapeutic to improve the efficacy of PD-1/PD-L1 blockade, and may have application potential in colon cancer treatment.
ISSN:1868-6958
1868-6966