DARE: Distill and Reinforce Ensemble Neural Networks for Climate-Domain Processing

Natural-language processing is well positioned to help stakeholders study the dynamics of ambiguous Climate Change-related (CC) information. Recently, deep neural networks have achieved good results on a variety of NLP tasks depending on high-quality training data and complex and exquisite framework...

Full description

Bibliographic Details
Main Authors: Kun Xiang, Akihiro Fujii
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/4/643