A Novel Un-Supervised GAN for Fundus Image Enhancement with Classification Prior Loss
Fundus images captured for clinical diagnosis usually suffer from degradation factors due to variation in equipment, operators, or environment. These degraded fundus images need to be enhanced to achieve better diagnosis and improve the results of downstream tasks. As there is no paired low- and hig...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/11/7/1000 |