Improving Diabetes Prediction Accuracy in Indonesia: A Comparative Analysis of SVM, Logistic Regression, and Naive Bayes with SMOTE and ADASYN
This study aims to enhance the accuracy of diabetes prediction models in Indonesia by comparing the performance of Support Vector Machines (SVM), Logistic Regression, and Naïve Bayes algorithms, both with and without synthetic oversampling techniques such as SMOTE and ADASYN. The research addresses...
Главные авторы: | , , |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Ikatan Ahli Informatika Indonesia
2024-10-01
|
Серии: | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
Предметы: | |
Online-ссылка: | https://jurnal.iaii.or.id/index.php/RESTI/article/view/5980 |