Learning Under Concept Drift for Regression—A Systematic Literature Review
Context: The amount and diversity of data have increased drastically in recent years. However, in certain situations, the data to which a trained Machine Learning model is significantly different from testing data, a problem known as Concept Drift (CD). Because CD can be a serious issue, there has b...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9762269/ |