Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness
Abstract Background & Aims To clarify the biological roles, circularization process and secretion pathway of circRHOBTB3 in colorectal cancer (CRC) progression. Methods We performed a comprehensive analysis of circRNA levels in serum exosomes from multiple types of cancer patients in public data...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2022-02-01
|
Series: | Molecular Cancer |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12943-022-01511-1 |
_version_ | 1819274890707992576 |
---|---|
author | Chaoyi Chen Hongfei Yu Fengyan Han Xuan Lai Kehong Ye Siqin Lei Minglang Mai Maode Lai Honghe Zhang |
author_facet | Chaoyi Chen Hongfei Yu Fengyan Han Xuan Lai Kehong Ye Siqin Lei Minglang Mai Maode Lai Honghe Zhang |
author_sort | Chaoyi Chen |
collection | DOAJ |
description | Abstract Background & Aims To clarify the biological roles, circularization process and secretion pathway of circRHOBTB3 in colorectal cancer (CRC) progression. Methods We performed a comprehensive analysis of circRNA levels in serum exosomes from multiple types of cancer patients in public databases and verified the higher level of circRHOBTB3 in CRC sera versus healthy donors by RT-qPCR. Then, the function of circRHOBTB3 in CRC was investigated in vitro and in vivo. RNA-seq and RNA pull-down assays together with mass spectrometry identified the downstream signals and the binding proteins of circRHOBTB3. Finally, Antisense oligonucleotides (ASOs) were designed to target circularization and secretion elements of circRHOBTB3 for CRC therapy. Results circRHOBTB3 levels were increased in the sera but was downregulated in tissue samples in CRC, and the downregulation was associated with poor prognosis. Furthermore, circRHOBTB3 acts a tumor-suppressive circRNA by repressing metabolic pathways, intracellular ROS production in CRC. Several key elements were discovered to regulate circRHOBTB3 circularization and exosomal secretion. Moreover, SNF8 was identified that sorts circRHOBTB3 into exosomes. Interestingly, we found that CRC cells could actively secrete more circRHOBTB3 than normal cells. According to the sequence of regulatory elements for circularization and exosomal secretion, we designed and synthesized ASOs, which increased circRHOBTB3 expression and blocked circRHOBTB3 exosomal secretion. More importantly, ASOs could inhibit CRC growth and metastasis in vitro and in vivo. Conclusions circRHOBTB3 plays a tumor-suppressive role in CRC and has to be excreted out of cells to sustain cancer cell fitness. ASOs targeting regulatory elements for circularization and exosomal secretion will become a novel antitumor strategy. |
first_indexed | 2024-12-23T23:15:37Z |
format | Article |
id | doaj.art-13d98dd752264a3cb3f6103d22446079 |
institution | Directory Open Access Journal |
issn | 1476-4598 |
language | English |
last_indexed | 2024-12-23T23:15:37Z |
publishDate | 2022-02-01 |
publisher | BMC |
record_format | Article |
series | Molecular Cancer |
spelling | doaj.art-13d98dd752264a3cb3f6103d224460792022-12-21T17:26:31ZengBMCMolecular Cancer1476-45982022-02-0121111910.1186/s12943-022-01511-1Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitnessChaoyi Chen0Hongfei Yu1Fengyan Han2Xuan Lai3Kehong Ye4Siqin Lei5Minglang Mai6Maode Lai7Honghe Zhang8Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of MedicineDepartment of Pathology and Women’s Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Abstract Background & Aims To clarify the biological roles, circularization process and secretion pathway of circRHOBTB3 in colorectal cancer (CRC) progression. Methods We performed a comprehensive analysis of circRNA levels in serum exosomes from multiple types of cancer patients in public databases and verified the higher level of circRHOBTB3 in CRC sera versus healthy donors by RT-qPCR. Then, the function of circRHOBTB3 in CRC was investigated in vitro and in vivo. RNA-seq and RNA pull-down assays together with mass spectrometry identified the downstream signals and the binding proteins of circRHOBTB3. Finally, Antisense oligonucleotides (ASOs) were designed to target circularization and secretion elements of circRHOBTB3 for CRC therapy. Results circRHOBTB3 levels were increased in the sera but was downregulated in tissue samples in CRC, and the downregulation was associated with poor prognosis. Furthermore, circRHOBTB3 acts a tumor-suppressive circRNA by repressing metabolic pathways, intracellular ROS production in CRC. Several key elements were discovered to regulate circRHOBTB3 circularization and exosomal secretion. Moreover, SNF8 was identified that sorts circRHOBTB3 into exosomes. Interestingly, we found that CRC cells could actively secrete more circRHOBTB3 than normal cells. According to the sequence of regulatory elements for circularization and exosomal secretion, we designed and synthesized ASOs, which increased circRHOBTB3 expression and blocked circRHOBTB3 exosomal secretion. More importantly, ASOs could inhibit CRC growth and metastasis in vitro and in vivo. Conclusions circRHOBTB3 plays a tumor-suppressive role in CRC and has to be excreted out of cells to sustain cancer cell fitness. ASOs targeting regulatory elements for circularization and exosomal secretion will become a novel antitumor strategy.https://doi.org/10.1186/s12943-022-01511-1ExosomeMetastasisColorectal cancercircRHOBTB3Circularization |
spellingShingle | Chaoyi Chen Hongfei Yu Fengyan Han Xuan Lai Kehong Ye Siqin Lei Minglang Mai Maode Lai Honghe Zhang Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness Molecular Cancer Exosome Metastasis Colorectal cancer circRHOBTB3 Circularization |
title | Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
title_full | Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
title_fullStr | Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
title_full_unstemmed | Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
title_short | Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
title_sort | tumor suppressive circrhobtb3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness |
topic | Exosome Metastasis Colorectal cancer circRHOBTB3 Circularization |
url | https://doi.org/10.1186/s12943-022-01511-1 |
work_keys_str_mv | AT chaoyichen tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT hongfeiyu tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT fengyanhan tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT xuanlai tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT kehongye tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT siqinlei tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT minglangmai tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT maodelai tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness AT honghezhang tumorsuppressivecircrhobtb3isexcretedoutofcellsviaexosometosustaincolorectalcancercellfitness |