Sparse Feature-Weighted Double Laplacian Rank Constraint Non-Negative Matrix Factorization for Image Clustering
As an extension of non-negative matrix factorization (NMF), graph-regularized non-negative matrix factorization (GNMF) has been widely applied in data mining and machine learning, particularly for tasks such as clustering and feature selection. Traditional GNMF methods typically rely on predefined g...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/23/3656 |