Deep Self-Supervised Diversity Promoting Learning on Hierarchical Hyperspheres for Regularization
In this paper, we propose a novel approach to enhance the generalization performance of deep neural networks. Our method employs a hierarchical hypersphere-based constraint that organizes weight vectors hierarchically based on observed data. By diversifying the parameter space of hyperplanes in the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10373009/ |