Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer

Abstract Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer...

Full description

Bibliographic Details
Main Authors: Fernando Perez-Villatoro, Jaana Oikkonen, Julia Casado, Anastasiya Chernenko, Doga C. Gulhan, Manuela Tumiati, Yilin Li, Kari Lavikka, Sakari Hietanen, Johanna Hynninen, Ulla-Maija Haltia, Jaakko S. Tyrmi, Hannele Laivuori, Panagiotis A. Konstantinopoulos, Sampsa Hautaniemi, Liisa Kauppi, Anniina Färkkilä
Format: Article
Language:English
Published: Nature Portfolio 2022-12-01
Series:npj Precision Oncology
Online Access:https://doi.org/10.1038/s41698-022-00339-8
_version_ 1797642138926710784
author Fernando Perez-Villatoro
Jaana Oikkonen
Julia Casado
Anastasiya Chernenko
Doga C. Gulhan
Manuela Tumiati
Yilin Li
Kari Lavikka
Sakari Hietanen
Johanna Hynninen
Ulla-Maija Haltia
Jaakko S. Tyrmi
Hannele Laivuori
Panagiotis A. Konstantinopoulos
Sampsa Hautaniemi
Liisa Kauppi
Anniina Färkkilä
author_facet Fernando Perez-Villatoro
Jaana Oikkonen
Julia Casado
Anastasiya Chernenko
Doga C. Gulhan
Manuela Tumiati
Yilin Li
Kari Lavikka
Sakari Hietanen
Johanna Hynninen
Ulla-Maija Haltia
Jaakko S. Tyrmi
Hannele Laivuori
Panagiotis A. Konstantinopoulos
Sampsa Hautaniemi
Liisa Kauppi
Anniina Färkkilä
author_sort Fernando Perez-Villatoro
collection DOAJ
description Abstract Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.
first_indexed 2024-03-11T13:55:52Z
format Article
id doaj.art-1510497742624a49b8fc5fba11d6c5dc
institution Directory Open Access Journal
issn 2397-768X
language English
last_indexed 2024-03-11T13:55:52Z
publishDate 2022-12-01
publisher Nature Portfolio
record_format Article
series npj Precision Oncology
spelling doaj.art-1510497742624a49b8fc5fba11d6c5dc2023-11-02T06:46:14ZengNature Portfolionpj Precision Oncology2397-768X2022-12-016111310.1038/s41698-022-00339-8Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancerFernando Perez-Villatoro0Jaana Oikkonen1Julia Casado2Anastasiya Chernenko3Doga C. Gulhan4Manuela Tumiati5Yilin Li6Kari Lavikka7Sakari Hietanen8Johanna Hynninen9Ulla-Maija Haltia10Jaakko S. Tyrmi11Hannele Laivuori12Panagiotis A. Konstantinopoulos13Sampsa Hautaniemi14Liisa Kauppi15Anniina Färkkilä16Research Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiDepartment of Biomedical Informatics, Harvard Medical SchoolResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiDepartment of Obstetrics and Gynecology, University of Turku and Turku University HospitalDepartment of Obstetrics and Gynecology, University of Turku and Turku University HospitalDepartment of Obstetrics and Gynecology, Helsinki University and Helsinki University HospitalCenter for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere UniversityCenter for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere UniversityDana-Farber Cancer Institute, Harvard Medical SchoolResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiResearch Program in Systems Oncology, University of HelsinkiAbstract Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.https://doi.org/10.1038/s41698-022-00339-8
spellingShingle Fernando Perez-Villatoro
Jaana Oikkonen
Julia Casado
Anastasiya Chernenko
Doga C. Gulhan
Manuela Tumiati
Yilin Li
Kari Lavikka
Sakari Hietanen
Johanna Hynninen
Ulla-Maija Haltia
Jaakko S. Tyrmi
Hannele Laivuori
Panagiotis A. Konstantinopoulos
Sampsa Hautaniemi
Liisa Kauppi
Anniina Färkkilä
Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
npj Precision Oncology
title Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
title_full Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
title_fullStr Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
title_full_unstemmed Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
title_short Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
title_sort optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
url https://doi.org/10.1038/s41698-022-00339-8
work_keys_str_mv AT fernandoperezvillatoro optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT jaanaoikkonen optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT juliacasado optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT anastasiyachernenko optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT dogacgulhan optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT manuelatumiati optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT yilinli optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT karilavikka optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT sakarihietanen optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT johannahynninen optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT ullamaijahaltia optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT jaakkostyrmi optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT hannelelaivuori optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT panagiotisakonstantinopoulos optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT sampsahautaniemi optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT liisakauppi optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer
AT anniinafarkkila optimizeddetectionofhomologousrecombinationdeficiencyimprovesthepredictionofclinicaloutcomesincancer