Comparison of Trivariate Copula-Based Conditional Quantile Regression Versus Machine Learning Methods for Estimating Copper Recovery

In this study, an innovative methodology using trivariate copula-based conditional quantile regression (CBQR) is proposed for estimating copper recovery. This approach is compared with six supervised machine learning regression methods, namely, Decision Tree, Extra Tree, Support Vector Regression (l...

ver descrição completa

Detalhes bibliográficos
Main Authors: Heber Hernández, Martín Alberto Díaz-Viera, Elisabete Alberdi, Aitor Goti
Formato: Artigo
Idioma:English
Publicado em: MDPI AG 2025-02-01
Colecção:Mathematics
Assuntos:
Acesso em linha:https://www.mdpi.com/2227-7390/13/4/576