Training Robust Deep Neural Networks on Noisy Labels Using Adaptive Sample Selection With Disagreement
Learning with noisy labels is one of the most practical but challenging tasks in deep learning. One promising way to treat noisy labels is to use the small-loss trick based on the memorization effect, that is, clean and noisy samples are identified by observing the network’s loss during t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9568980/ |