Building gender-specific sexually transmitted infection risk prediction models using CatBoost algorithm and NHANES data
Abstract Background and aims Sexually transmitted infections (STIs) are a significant global public health challenge due to their high incidence rate and potential for severe consequences when early intervention is neglected. Research shows an upward trend in absolute cases and DALY numbers of STIs,...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2024-01-01
|
Series: | BMC Medical Informatics and Decision Making |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12911-024-02426-1 |