Nanoadjuvant-triggered STING activation evokes systemic immunotherapy for repetitive implant-related infections

Repetitive implant-related infections (IRIs) are devastating complications in orthopedic surgery, threatening implant survival and even the life of the host. Biofilms conceal bacterial-associated antigens (BAAs) and result in a ''cold tumor''-like immune silent microenvironment,...

Full description

Bibliographic Details
Main Authors: Dongdong Xu, Jun Hu, Jiawei Mei, Jun Zhou, Zhengxi Wang, Xudong Zhang, Quan Liu, Zheng Su, Wanbo Zhu, Hongjian Liu, Chen Zhu
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2024-05-01
Series:Bioactive Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2452199X24000306
Description
Summary:Repetitive implant-related infections (IRIs) are devastating complications in orthopedic surgery, threatening implant survival and even the life of the host. Biofilms conceal bacterial-associated antigens (BAAs) and result in a ''cold tumor''-like immune silent microenvironment, allowing the persistence of IRIs. To address this challenge, an iron-based covalent organic framed nanoadjuvant doped with curcumin and platinum (CFCP) was designed in the present study to achieve efficient treatment of IRIs by inducing a systemic immune response. Specifically, enhanced sonodynamic therapy (SDT) from CFCP combined with iron ion metabolic interference increased the release of bacterial-associated double-stranded DNA (dsDNA). Immunogenic dsDNA promoted dendritic cell (DC) maturation through activation of the stimulator of interferon gene (STING) and amplified the immune stimulation of neutrophils via interferon-β (IFN-β). At the same time, enhanced BAA presentation aroused humoral immunity in B and T cells, creating long-term resistance to repetitive infections. Encouragingly, CFCP served as neoadjuvant immunotherapy for sustained antibacterial protection on implants and was expected to guide clinical IRI treatment and relapse prevention.
ISSN:2452-199X