Analysis of Machine Learning Methods for COVID-19 Detection Using Serum Raman Spectroscopy
One of the most challenging aspects of the emergent coronavirus disease 2019 (COVID-19) pandemic caused by infection of severe acute respiratory syndrome coronavirus 2 has been the need for massive diagnostic tests to detect and track infection rates at the population level. Current tests such as re...
Auteur principal: | David Chen |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Taylor & Francis Group
2021-12-01
|
Collection: | Applied Artificial Intelligence |
Accès en ligne: | http://dx.doi.org/10.1080/08839514.2021.1975379 |
Documents similaires
-
Machine Learning for COVID-19 Determination Using Surface-Enhanced Raman Spectroscopy
par: Tomasz R. Szymborski, et autres
Publié: (2024-01-01) -
Power of Light: Raman Spectroscopy and Machine Learning for the Detection of Lung Cancer
par: Harun Hano, et autres
Publié: (2024-03-01) -
Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey
par: Shuhan Hu, et autres
Publié: (2022-03-01) -
Accurate Tumor Subtype Detection with Raman Spectroscopy via Variational Autoencoder and Machine Learning
par: Chang He, et autres
Publié: (2022-03-01) -
Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy
par: Seongyong Park, et autres
Publié: (2022-01-01)