Metal-semiconductor phase transition in nanoheteroepitaxial structures technology
Relevance of the work is caused by the necessity of obtain nanogeteroepitaxial structures with quantum dots to design and to develop the production of semiconductor energy high-performance devices. The main aim of the study is to identify the reasons of forming wide-receiving semiconductor material...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Tomsk Polytechnic University
2019-05-01
|
Series: | Известия Томского политехнического университета: Инжиниринг георесурсов |
Subjects: | |
Online Access: | http://izvestiya.tpu.ru/archive/article/view/1430 |
Summary: | Relevance of the work is caused by the necessity of obtain nanogeteroepitaxial structures with quantum dots to design and to develop the production of semiconductor energy high-performance devices. The main aim of the study is to identify the reasons of forming wide-receiving semiconductor material of narrow-gap one when growing it in the form of quantum dots; to investigate the possibility of applying metal-semiconductor phase transition to obtain the material which in the form of quantum dots corresponds to narrow-gap semiconductor. The methods used in the study: nanogeteroepitaxial structures with quantum dots were grown by liquid-phase epitaxy with pulse-cooled substrate; properties of the structures obtained were studied by investigation of their photoluminescence spectra taken from the samples using a set of spectral apparatus based on two monochromators MDR-41. The results: The authors have revealed that the change in InAs bandgap in quantum dot is caused by a quantum dot size as compared with InAs bulk material. The dimension of the dots depends on difference between the lattice constants of the matrix material and quantum dot material. Metal-semiconductor interface phase transition is implemented in nanogeteroepitaxial structures with quantum dots of metal (Yb). The bandgap of the semiconductor formed at the time is determined by the growth temperature. Application of metal-semiconductor phase transition allows obtaining in one process multilayer nanogeteroepitaxial structures with the arrays of quantum dots with different values of the bandgap. |
---|---|
ISSN: | 2500-1019 2413-1830 |