Deep Neural Networks for Estimating Regularization Parameter in Sparse Time–Frequency Reconstruction
Time–frequency distributions (TFDs) are crucial for analyzing non-stationary signals. Compressive sensing (CS) in the ambiguity domain offers an approach for TFD reconstruction with high performance, but selecting the optimal regularization parameter for various signals remains challenging. Traditio...
Egile nagusia: | |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
MDPI AG
2024-12-01
|
Saila: | Technologies |
Gaiak: | |
Sarrera elektronikoa: | https://www.mdpi.com/2227-7080/12/12/251 |