Predicting the failure of two-dimensional silica glasses

The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions.

Bibliographic Details
Main Authors: Francesc Font-Clos, Marco Zanchi, Stefan Hiemer, Silvia Bonfanti, Roberto Guerra, Michael Zaiser, Stefano Zapperi
Format: Article
Language:English
Published: Nature Portfolio 2022-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-30530-1