Superlinear singular fractional boundary-value problems

In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alp...

Full description

Bibliographic Details
Main Authors: Imed Bachar, Habib Maagli
Format: Article
Language:English
Published: Texas State University 2016-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/108/abstr.html