Superlinear singular fractional boundary-value problems

In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alp...

Full description

Bibliographic Details
Main Authors: Imed Bachar, Habib Maagli
Format: Article
Language:English
Published: Texas State University 2016-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/108/abstr.html
Description
Summary:In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alpha \leq 4$, $D^{\alpha }$ is the Riemann-Liouville fractional derivative and $\xi ,\zeta \geq 0$ are such that $\xi +\zeta >0$. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty))$ that may be singular at x=0 and x=1 is required to satisfy convenient hypotheses to be stated later.
ISSN:1072-6691