Superlinear singular fractional boundary-value problems

In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alp...

Full description

Bibliographic Details
Main Authors: Imed Bachar, Habib Maagli
Format: Article
Language:English
Published: Texas State University 2016-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/108/abstr.html
_version_ 1828845527930765312
author Imed Bachar
Habib Maagli
author_facet Imed Bachar
Habib Maagli
author_sort Imed Bachar
collection DOAJ
description In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alpha \leq 4$, $D^{\alpha }$ is the Riemann-Liouville fractional derivative and $\xi ,\zeta \geq 0$ are such that $\xi +\zeta >0$. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty))$ that may be singular at x=0 and x=1 is required to satisfy convenient hypotheses to be stated later.
first_indexed 2024-12-12T21:30:13Z
format Article
id doaj.art-1750b139a91443aca6a34e6d619b2e03
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T21:30:13Z
publishDate 2016-04-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-1750b139a91443aca6a34e6d619b2e032022-12-22T00:11:21ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-04-012016108,115Superlinear singular fractional boundary-value problemsImed Bachar0Habib Maagli1 King Saud Univ., Riyadh, Saudi Arabia King Saud Univ., Riyadh, Saudi Arabia In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 0<x<1, \cr u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\cr \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , }$$ where $3<\alpha \leq 4$, $D^{\alpha }$ is the Riemann-Liouville fractional derivative and $\xi ,\zeta \geq 0$ are such that $\xi +\zeta >0$. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty))$ that may be singular at x=0 and x=1 is required to satisfy convenient hypotheses to be stated later.http://ejde.math.txstate.edu/Volumes/2016/108/abstr.htmlFractional differential equationpositive solutionGreen's functionperturbation arguments
spellingShingle Imed Bachar
Habib Maagli
Superlinear singular fractional boundary-value problems
Electronic Journal of Differential Equations
Fractional differential equation
positive solution
Green's function
perturbation arguments
title Superlinear singular fractional boundary-value problems
title_full Superlinear singular fractional boundary-value problems
title_fullStr Superlinear singular fractional boundary-value problems
title_full_unstemmed Superlinear singular fractional boundary-value problems
title_short Superlinear singular fractional boundary-value problems
title_sort superlinear singular fractional boundary value problems
topic Fractional differential equation
positive solution
Green's function
perturbation arguments
url http://ejde.math.txstate.edu/Volumes/2016/108/abstr.html
work_keys_str_mv AT imedbachar superlinearsingularfractionalboundaryvalueproblems
AT habibmaagli superlinearsingularfractionalboundaryvalueproblems