Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions
Under consideration is the damped semilinear wave equation $$ u_{tt}+u_t-\Delta u+u+f(u)=0 $$ in a bounded domain $\Omega$ in $\mathbb{R}^3$ subject to an acoustic boundary condition with a singular perturbation, which we term "massless acoustic perturbation", $$ \varepsilon\delta_...
Главный автор: | Joseph L. Shomberg |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Texas State University
2018-08-01
|
Серии: | Electronic Journal of Differential Equations |
Предметы: | |
Online-ссылка: | http://ejde.math.txstate.edu/Volumes/2018/152/abstr.html |
Схожие документы
-
On the upper semicontinuity of global attractors for damped wave equations
по: Joseph L. Shomberg
Опубликовано: (2017-09-01) -
Robust exponential attractors for singularly perturbed phase-field type equations
по: Alain Miranville, и др.
Опубликовано: (2002-07-01) -
Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings
по: Gongwei Liu, и др.
Опубликовано: (2022-07-01) -
Attractors and their structure for semilinear wave equations with nonlinear boundary dissipation
по: Irena Lasiecka, и др.
Опубликовано: (2004-07-01) -
Fitted numerical method for singularly perturbed semilinear three-point boundary value problem
по: M. Gebeyehu, и др.
Опубликовано: (2022-03-01)