On the Minimum Number of Completely 3-Scrambling Permutations

A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible...

Full description

Bibliographic Details
Main Author: Jun Tarui
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3443/pdf