Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1.

Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which...

Full description

Bibliographic Details
Main Authors: Dahwan Lim, So-Hui Choe, Sein Jin, Seulgi Lee, Younjin Kim, Ho-Chul Shin, Joon Sig Choi, Doo-Byoung Oh, Seung Jun Kim, Jinho Seo, Bonsu Ku
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-06-01
Series:PLoS Biology
Online Access:https://doi.org/10.1371/journal.pbio.3002156
Description
Summary:Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
ISSN:1544-9173
1545-7885