Design, Synthesis and Pharmacological Evaluation of Novel Hsp90N‐terminal Inhibitors Without Induction of Heat Shock Response

Abstract Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives (A1‐26, B1‐13, C1‐23) as Hs...

Full description

Bibliographic Details
Main Authors: Dr. Peng Liu, Dr. Xiangling Chen, Dr. Jianming Zhu, Dr. Bo Li, Dr. Zhaoqiang Chen, Dr. Guimin Wang, Dr. Haiguo Sun, Dr. Zhijian Xu, Dr. Zhixin Zhao, Dr. Chen Zhou, Dr. Chengying Xie, Prof. Liguang Lou, Prof. Weiliang Zhu
Format: Article
Language:English
Published: Wiley-VCH 2019-03-01
Series:ChemistryOpen
Subjects:
Online Access:https://doi.org/10.1002/open.201900055
Description
Summary:Abstract Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives (A1‐26, B1‐13, C1‐23) as Hsp90 inhibitors. Compound A14 directly bound to Hsp90 in a different manner from traditional Hsp90 inhibitors, and degraded client proteins, but did not induce the concomitant activation of Hsp72. Importantly, A14 exhibited the most potent anti‐proliferation ability by inducing autophagy, with the IC50 values of 0.1 μM and 0.4 μM in A549 and SK‐BR‐3 cell lines, respectively. The in vivo study demonstrated that A14 could induce autophagy and degrade Hsp90 client proteins in tumor tissues, and exhibit anti‐tumor activity in A549 lung cancer xenografts. Therefore, the compound A14 with potent antitumor activity and unique pharmacological characteristics is a novel Hsp90 inhibitor for developing anticancer agent without heat shock response.
ISSN:2191-1363