Fault Diagnosis of Tennessee Eastman Process with XGB-AVSSA-KELM Algorithm
In fault detection and the diagnosis of large industrial systems, whose chemical processes usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classification accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM) based...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/15/9/3198 |